Find dydxin the following questions:
y=tan−13x−x31−3x2, −1√3<x<1√3.
Substitute tan−1x=θ i.e.,x=tan θ
∴ y=tan−13x−x31−3x2=tan−13 tan θ− tan3θ1− 3 tan2θ (∵tan 3θ=3 tan θ−tan3θ1− 3tan2θ)
y=tan−1(tan 3θ)=3θ=3 tan−1x
Differentiating both sides w.r.t. x, we get
⇒ dydx=3ddx(tan−1x)=31+x2 (∵ ddx(tan−1x)=11+x2)