wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydxin the following questions:

y=tan13xx313x2, 13<x<13.

Open in App
Solution

Substitute tan1x=θ i.e.,x=tan θ

y=tan13xx313x2=tan13 tan θ tan3θ1 3 tan2θ (tan 3θ=3 tan θtan3θ1 3tan2θ)

y=tan1(tan 3θ)=3θ=3 tan1x

Differentiating both sides w.r.t. x, we get

dydx=3ddx(tan1x)=31+x2 ( ddx(tan1x)=11+x2)


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon