wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Find dydxof the functions given in question.

(cos x)y=cos y)x.

Open in App
Solution

Given, (cos x)y=(cos y)x., taking log on both sides, we get

{(cos x)y}=log {(cos y)x} or y log (cos x)=x log (cos y)Differentiating both sides w.r.t. x, we getyddx(log cos x)+log cos xddxy=x ddx(log cos y)+log cos yddxx (Using product rule)y(1cos x)(sin x)+log (cos x)dydx=x(1cos y)(sin y)dydx+log (cos y).1 log(cos s)dydx+x tan ydydx=log (cos y)+y tan x (log(cos x)+x tan y)dydx=log (cos y)+y tan x dydx=log (cos y)+y (tan x)log(cos x)+x tan y


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon