Find dydxof the functions given in question.
(cos x)y=cos y)x.
Given, (cos x)y=(cos y)x., taking log on both sides, we get
{(cos x)y}=log {(cos y)x} or y log (cos x)=x log (cos y)Differentiating both sides w.r.t. x, we getyddx(log cos x)+log cos xddxy=x ddx(log cos y)+log cos yddxx (Using product rule)y(1cos x)(−sin x)+log (cos x)dydx=x(1cos y)(−sin y)dydx+log (cos y).1⇒ log(cos s)dydx+x tan ydydx=log (cos y)+y tan x⇒ (log(cos x)+x tan y)dydx=log (cos y)+y tan x⇒ dydx=log (cos y)+y (tan x)log(cos x)+x tan y