Find dydxof the functions given in question.
xy+yx=1
Given xy+yx=1
Let u=xy, v=yx
∴ u + v = 1
Differentiating w.r.t. x, dudx+dvdx=0
dudx+dvdx=0
Now, u=xy
Taking log on both sides, we get log u = y log x
Differentiating w.r.t. x
⇒ 1ududx=y×1x+log xdydx (Using product rule)⇒ dudx=u[yx+log x dyx]⇒ dudx=xy[yx+log x dydx]⇒ dudx=yxy−1+xy.log x dydxNow,v=yxTaking log on both sides⇒ log v=x log yDifferentiating w.r.t. x,⇒ 1vdvdx=x×1ydydx+log y⇒ dvdxv[xydydx+log y]⇒ dvdxyx[xydydx+log y]dvdx=xyx−1dydx+yxlog yNow, putting the values of dudx and dvdx in Eq.(i).yxy−1+xy.log xdydx=xyx−1dydx+yxlog y=0⇒ dydx[xylog x+xyx−1]=−yxlog y+yxy−1⇒ dydx=−yxlog y+yxy−1xylog x+xyx−1