wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydxof the functions given in question.

xy+yx=1

Open in App
Solution

Given xy+yx=1

Let u=xy, v=yx

u + v = 1

Differentiating w.r.t. x, dudx+dvdx=0

dudx+dvdx=0

Now, u=xy

Taking log on both sides, we get log u = y log x

Differentiating w.r.t. x

1ududx=y×1x+log xdydx (Using product rule) dudx=u[yx+log x dyx] dudx=xy[yx+log x dydx] dudx=yxy1+xy.log x dydxNow,v=yxTaking log on both sides log v=x log yDifferentiating w.r.t. x, 1vdvdx=x×1ydydx+log y dvdxv[xydydx+log y] dvdxyx[xydydx+log y]dvdx=xyx1dydx+yxlog yNow, putting the values of dudx and dvdx in Eq.(i).yxy1+xy.log xdydx=xyx1dydx+yxlog y=0 dydx[xylog x+xyx1]=yxlog y+yxy1 dydx=yxlog y+yxy1xylog x+xyx1


flag
Suggest Corrections
thumbs-up
24
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Inverse of a Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon