Find dydxof the functions given in question.
yx=xy.
Given, yx=xy.
Taking log on both sides, we get log yx=log xy ⇒ x log y=y log x
differentiating both sides w.r.t. x, we obtain
ddx(x log y)=ddx(y log x)⇒ x(1y)dydx+(log y)y 1x+(log x)dydx (Using product rule)⇒ xydydx−(log x)dydx=yx−log y⇒ (xy−log x)dydx=yx−log y⇒ (x−y log xydydx=y−x log yx)⇒ dydx−yx(y−x log yx−y log x)