wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx when x and y are connected by the relation given.

sin (xy)+xy=x2y

Open in App
Solution

We have, sin(xy)+xy=x2y
On differentiating both sides. w.r.t. x, we get
ddx(sin xy)+ddx(xy)=ddx(x2)dydxcos (xy).ddx(xy)+yddxxx.ddxyy2=2xdydxcos (xy).[x.dydx+y]+yxdydxy2=2xdydxx cos (xy).dydx+y cos (xy)+yy2xy2dydx=2xdydxdydx[x cos (xy)xy2+1]=2xy cos (xy)yy2 dydx=[2xyy2coxy1y][y2xy2cosxyx+y2]=(2xyy2cos (xy)1)(xy2cos (xy)x+y2)


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon