(a) Given equation sinθ=1/2
sinθ=sin(π/6)
If sinx=siny
then general formula is x=nπ+(−1)ny;=0,±2,±3.........
using this we get , θ=nπ+(−1)n(π/6);n=0,±1,±2,±3..........
θ=nπ+(−1)n(π/6);n=0,±1,±2,±3,.......
(b) Given equation ∴cos(3θ/2)=0
If cosx=0, then x=(2n+1)π/2 where n=0,±1,±2......
using this we get , 3θ2=(2n+1)π2, where n=0,±1,±2,....
θ=(2n+1)π/3wheren=0,±1,±2,...
(c) tan(30/4)=0
If tanθ=tanαthenθ=nπ+α,wheren=0,±1,±2,....
using this we, get 3θ/4=nπwheren=0,±1,±2,........
θ=4nπ/3wheren=0,±1,±2,.........
(d) √3sec2θ=2
cos2θ=√3/2⇒cos2θ=cosπ/6
using formula if cosx=cosythenx=2nπ±ywheren=0,±1,±2......
We get 2θ=2nπ±π/6wheren=0,±1,±2.......
θ=nπ±π/12wheren=0,±1,±2,........
(e) cos(θ/2)=−1
sin(θ/2)=−1⇒sinθ/2=sin3π/2
θ/2=nπ+(−1)n3π/2wheren=0,±1,±2.......
θ=2nπ+(−1)3πwheren=0,±1,±2.....