(ii) ∫sin2xcos3x dx
Multiply and divide by 2
=12∫2sin2xcos3x dx
=12∫[sin(2x+3x)+sin(2x−3x)] dx
[∵2sinAcosB=sin(A+B)+sin(A−B)]
=12∫[sin(5x)+sin(−x)] dx
=12∫[sin5x−sinx] dx
=12∫sin5x dx−12∫sin x dx
=12[−15cos5x−(−cosx)]+C
=−110cos5x+12cos x+C
Where C is constant of integration.
(iii) ∫sin3x dx
Using sin3x=3sinx−4sin3x
=∫3sinx−sin3x4dx
=14∫(3sinx−sin3x)dx
=14[3(−cos x)−(−13cos3x)]+C
=14[−3cosx+13cos3x]+C
=−34cos x+112cos 3x+C
Where C is constant of integration.