Let I=∫π20log(4+3sinx4+3cosx)dx...(1)
⇒I∫π20log[4+3sin(π2−x)4+3cos(π2−x)]dx
⇒I=∫π20log(4+3cosx4+3sinx)dx...(2)
From (1) + (2), we get
2I=∫π20[log(4+3sinx4+3cosx)dx+log(4+3cosx4+3sinx)dx]
=∫π20[log(4+3sinx4+3cosx)×log(4+3cosx4+3sinx)]dx
=∫π20(log 1)dx
=∫π20(0)dx
=0.