Use the concept of continuity of a function at a point
Given that
f(x)=⎧⎪⎨⎪⎩|x−4|2(x−4),if x≠40,if x=4 at x=4 …(1)
At x=4,L.H.L=limx→4−f(x)
=limh→0+f(4−h)
=limh→0+|(4−h)−4|2[(4−h)−4]
=limh→0+|−h|−2h=limh→0+−(−h)−2h
=limh→0+h−2h=−12 …(2)
{∵|−h|=−(−h)=h as h>0}
At x=4,R.H.L=limx→4+f(x)
=limh→0+f(4+h)
=limh→0+|(4+h)−4|2[(4+h)−4]
=limh→0+|h|−2h=limh→0+h−2h=−12
∴L.H.L=R.H.L …(3)
So, limit exists. Now check for continuity,
Given that f(4)=0 …(4)
Since, LHL=RHL≠f(4)
[Using (3) and (4)]
So, f(x) is discontinuous at x=4