Find left hand limit at x=2
Given that
f(x)=⎧⎪⎨⎪⎩2x2−3x−2x−2,if x≠25,if x=2 at x=2 …(1)
At x=2,L.H.L=limx→2−f(x)
=limh→0+f(2−h)
=limh→0+2(2−h)2−3(2−h)−2(2−h)−2
=limh→0+8+2h2−8h−6+3h−2−h
{∵(a−b)2=a2+b2−2ab}
=limh→0+2h2−5h−h=limh→0+h(2h−5)−h=5 …(2)
Find right hand limit at x=2
R.H.L=limx→2+f(x)=limh→0+f(2+h)
=limh→0+2(2+h)2−3(2+h)−2(2+h)−2
{∵(a−b)2=a2+b2−2ab}
=limh→0+2h2+5hh
=limh→0+h(2h+5)h=5 …(3)
Also, f(2)=5 …(4)
∴L.H.L=R.H.L=f(2)
[Using (2), (3), (4)]
f(x) is continuous at x=2