Find left hand limit at x=0
f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪⎩e1x if x≠01+e1x ifx=00,
at x=0
L.H.L=limx→0−f(x)=limh→0+f(0−h)
limh→0+e(10−h)1+e(10−h)
=limh→0+e(1−h)1+e(1−h)
=e−∞1+e−∞=01+0=0
Find right hand limit at x=0
R.H.L=limx→0+f(x)=limh→0+f(0+h)
=limh→0+e(10+h)1+e10+h
limh→0+1e(−1h)+1
1e−∞+1
10+1e−∞=0
=1......(3)
Thus R.H.L≠L.H.L at x=