Use the concept of continuity of a function at a point
⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩x22, if0≤x≤12x2−3x+32,if1<x≤2
Find LHL, RHL and value of function (if required) at given point and compare them for checking continuity:
At x=1
L.H.L.=limx→1−f(x)=limh→0+f(1−h)
=limh→0+(1−h)22
limh→0+1+h2−2h2=12...(2)
(a−b)2=a2+b2−2ab
R.H.L=limx→1+f(x)=limh→0+f(1+h)
=limh→0+[2(1+h)2−3(1+h)+32]
=2−3+32=12....(3)
Now,f(1)=122=12...(4)
From (2),(3),(4)
L.H.L=R.H.L=f(1)
Hence,f(x) is continuous at x=1