wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find :
1cos(xa)cos(xb)dx

Open in App
Solution

1cos(xa)cos(xb)dx
=1sin(ab)sin(ab)cos(xa).cos(xb) [ multiply & divide by sin(ab)]
=1sin(ab)sin(ab+xx)cos(xa).cos(xb)dx
=1sin(ab)sin(xb)+(ax)cos(xa).cos(xb)dx
=1sin(ab)sin(xb)(xa)cos(xa).cos(xb)dx
=1sin(ab)sin(xb).(xa)cos(xb).sin(xa)cos(xa).cos(xb)dx
=1sin(ab)[sin(xb)cos(xb)sin(xa)cos(xa)dx]
=1sin(ab)(tan(xb)tan(xa))dx
=1sin(ab)[log|cos(xb)(log|cos(xa)|)]+c
=1sin(ab)[log|cos(xb)+log|cos(xa)|]+c
=1sin(ab)[log|cos(xa)cos(xb)|]+c

1155627_1109718_ans_987ebcd0d7364ad58e0c92743ab230f6.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon