wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dxx2a2 and hence evaluate dxx225.

Open in App
Solution

dxx2a2

=dx(xa)(x+a)

=12a((x+a)(xa))dx(xa)(x+a)

=12a(x+a)dx(xa)(x+a)(xa)dx(xa)(x+a)

=12adx(xa)dx(x+a)

=12a[log|xa|log|x+a|]+c

=12alogxax+a+c

Now dxx225

=dxx252

=12×5logx5x+5+c

=110logx5x+5+c


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon