wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dxx2a2 and hence evaluate dx3x2+13x10.

Open in App
Solution

To find dxx2a2
Let us first expand the term given under integral sign i.e. 1x2a2
1x2a2=1(xa)(x+a)
Let 1(xa)(x+a)=A(xa)+B(x+a)
A(x+a)+B(xa)=1
A+B=0 and AB=1a
B=12a and A=12a
dxx2a2=[12a(xa)12a(x+a)]dx
=12adx(xa)dx(x+a)
=12a[log(xa)log(x+a)
=12alog(xax+a)
Consider 13x2+13x10=1(3x2)(x+5)
Let 1(3x2)(x+5)=A(3x2)+B(x+5)
A(x+5)+B(3x2)=1
A+3B=0 and 5A2B=1
A=317 and B=117

13x2+13x10=[317(3x2)117(x+5)]dx
=117[3log(3x2)log(x+5)]
=117[log(3x2)3log(x+5)]
=117log((3x2)3(x+5))

Hence, 13x2+13x10=117log((3x2)3(x+5))

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon