Find ∫2cosx(1−sinx)(1+sin2x)dx
Let I = ∫2cosx(1−sinx)(1+sin2x)dx [Put sinx=t⇒cosxdx=dt]
∴I=∫2dt(1−t)(1+t2)....(i)
Consider 2(1−t)(1+t2)=A1−t+B(2t)1+t2+C1+t2 ⇒2=A(1+t2)+B(2t)(1−t)+C(1−t)
On comparing the coefficients of like terms , we get A=1,B=12,C=1
By(i), I=∫dt1−t+12∫2t1+t2dt+∫11+t2dt=−log|1−t|+12log|1+t2|+tan−1t+c∴I=12log|1+sin2x|−log|1−sinx|+tan−1(sin x)+c