wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find : 2cos x(1sin x)(1+sin2x)dx

Open in App
Solution

Let I = 2cos x(1sin x)(1+sin2x)dx

Put sin x=tcosx dx=dt

I=2dt(1t)(1+t2)

2(1t)(1+t2)=A1t+Bt+C1+t2
2=A(1+t2)+(Bt+C)(1t)
2=A+At2+Bt+CBt2Ct
2=(A+C)+(AB)t2+(BC)t
Comparing both sides, we get,
AB=0A=B and BC=0B=C
A+C=2A+A=22A=2A=1
A=B=C=1
2(1t)(1+t2)=11t+t+11+t2

I=11tdt+t+11+t2dt
=11tdt+t1+t2dt+11+t2dt
=11tdt+122t1+t2dt+11+t2dt

Let u=1+t2 in the middle integral. du=2t dt

=11tdt+121udu+11+t2dt

= log|1t|1+12log|u|+tan1t+C

=log|1sin x|+12log|1+sin2x|+tan1(sin x)+C

flag
Suggest Corrections
thumbs-up
20
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon