Let
I=∫(2x−5)e2x(2x−3)3dx
=∫[(2x−3)−2]e2x(2x−3)3dx
=∫2x−3(2x−3)3.e2xdx−∫2e2x(2x−3)3dx
=∫e2xdx(2x−3)2−∫2e2xdx(2x−3)3I1I2
Finding, I1=∫e2x dx(2x−3)2
Integrating I1 by taking 1(2x−3)2 as the first function and e2x as second function.
=1(2x−3)2.e2x2−∫[ddx(2x−3)−2.e2x2]dx
=1(2x−3)2.e2x2−∫(−2)(2x−3)−2−1.2.e2x2dx
I1=1(2x−3)2.e2x2+∫2e2x(2x−3)3dx+C
I1=e2x2(2x−3)2+I2+C
Hence,
I=I1−I2=e2x2(2x−3)2+C