wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find : (2x5)e2x(2x3)3dx

Open in App
Solution

Let
I=(2x5)e2x(2x3)3dx

=[(2x3)2]e2x(2x3)3dx

=2x3(2x3)3.e2xdx2e2x(2x3)3dx

=e2xdx(2x3)22e2xdx(2x3)3I1I2

Finding, I1=e2x dx(2x3)2

Integrating I1 by taking 1(2x3)2 as the first function and e2x as second function.

=1(2x3)2.e2x2[ddx(2x3)2.e2x2]dx

=1(2x3)2.e2x2(2)(2x3)21.2.e2x2dx

I1=1(2x3)2.e2x2+2e2x(2x3)3dx+C

I1=e2x2(2x3)2+I2+C

Hence,

I=I1I2=e2x2(2x3)2+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon