We have,
∫2x(x2+1)(x4+4)dx
⇒∫2x(x2+1)((x2)2+4)dx
Let
x2=t
2xdx=dt
Using by partial dfraction and we get,
1(t+1)(t2+4)=A(t+1)+Bt+C(t2+4)......(A)
1=A(t2+4)+(Bt+C)(t+1)
1=At2+4A+Bt2+Ct+Bt+C
1=(A+B)t2+(B+C)t+(4A+C)
Comparing coefficients and we get,
A+B=0.......(1)
B+C=0.......(2)
4A+C=1.......(3)
By equation (1), (2) and (3) to,
A=15,B=−15,C=15
Then, by equation (A) and we get,
1(t+1)(t2+4)=15(t+1)+−15t+15(t2+4)
1(t+1)(t2+4)=15(t+1)−15t(t2+4)+15(t2+4)
On integrating and we get,
∫1(t+1)(t2+4)=15∫1(t+1)dt−15∫t(t2+4)dt+15∫1(t2+22)dt
=15logt−15log(t2+4)+15×12tan−1t2+C
=15logtt2+4+110tan−1t2+C
Put the value of t=x2 and we get,
=15logx2x4+4+110tan−1x22+C
Hence, this is the answer.