Let I=∫sec x1+cosec xdx=∫sin xcos x(1+sin x)dx=∫sin x cos x(1−sin x)(1+sin x)2dx
Put sin x=t⇒cos xdx=dt ∴I=∫t(1−t)(1+t)2dt
Consider t(1−t)(1+t)2=A1+t+B(1+t)2+C1−t ⇒t=A(1−t2)+B(1−t)+C(1+t)2
On comparing the coefficients of like terms on both sides, we get: A=14,B=−12,C=14.
So, I=∫(14×11+t−12×1(1+t)2×14×11−t)dt=14log|1+t|+12+2t−14log|1−t|+c
∴I=14log|1+sin x1−sin x|+12+2 sin x+c.