Let I=∫sinθ dθ(4+cos2θ)(2−(1−cos2θ))
= ∫sinθdθ(4+cos2θ)(1+cos2θ)
= ∫sinθdθ(4+cos2θ) (1+cos2θ)
Put cosθ
⇒−sinθ dθ=dt ⇒sinθ dθ=−dt
⇒I=−∫dt(4+t2)(1+t2)
For Partial Fraction, we have Let
1(4+t2)(1+t2)=At+B4+t2+Ct+D1+t2
1=(At+B)(1+t2)+(Ct+D)(4+t2)
1=(B+4D)+(A+4C)t+(B+D)t2+(A+C)t3
Put t = 0, we have B + 4D = 1 ...(i)
Equating the coeff. of t on both sides, we have A + 4 C = 0...(ii)
Equating the coeff. of t2andt3 respectively,
we obtain B+D = 0...(iii) and A + C = 0 ...(iv)
Solving (i), (ii),(iii) and (iv), we obtain
A = C = 0, B =−13 and D=13
∴1(4+t2)(1+t2)=−134+t2+131+t2
I=−[−13∫14+t2dt+13∫11+t2dt]
=−[−16tan−1t2+13tan−1t]+C
=16tan−1(cosθ2)−13tan−1(cosθ) + C