1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Sum of Infinite Terms of a GP
Find : ∫ x ·...
Question
Find :
∫
x
⋅
ℓ
n
(
x
+
√
1
+
x
2
)
√
1
+
x
2
d
x
equals :-
A
x
ℓ
n
(
x
+
√
1
+
x
2
)
−
x
+
c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x
2
⋅
ℓ
n
2
(
x
+
√
1
+
x
2
)
−
x
√
1
+
x
2
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x
2
⋅
ℓ
n
2
(
x
+
√
1
+
x
2
)
+
x
√
1
+
x
2
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
√
1
+
x
2
ℓ
n
(
x
+
√
1
+
x
2
)
+
x
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
x
ℓ
n
(
x
+
√
1
+
x
2
)
−
x
+
c
∫
x
.
l
n
(
x
+
√
1
+
x
2
)
√
1
+
x
2
d
x
Put
√
1
+
x
2
=
t
⇒
1
+
x
2
=
t
2
⇒
2
x
d
x
=
2
t
d
t
⇒
x
d
x
=
t
d
t
∴
I
=
∫
l
n
(
√
t
2
−
1
+
t
)
t
.
t
d
t
=
∫
l
n
(
√
t
2
−
1
+
t
)
d
t
=
(
√
t
2
−
1
+
t
)
l
n
(
√
t
2
−
1
+
t
)
−
(
√
t
2
−
1
+
t
)
+
c
(
2
t
2
√
t
2
−
1
+
1
)
=
(
√
t
2
−
1
)
[
(
√
t
2
−
1
+
t
)
l
n
(
√
t
2
−
1
+
t
)
−
(
√
t
2
−
1
+
t
)
]
t
+
√
t
2
−
1
+
c
=
x
[
(
x
+
√
1
+
x
2
)
l
n
(
x
+
√
1
+
x
2
)
−
(
x
+
√
1
+
x
2
)
]
x
+
√
1
+
x
2
+
c
=
x
l
n
(
x
+
√
1
+
x
2
)
−
x
+
c
[A]
Suggest Corrections
0
Similar questions
Q.
∫
√
x
+
1
x
d
x
is equal to