f(x)=sin x(1+cosx)f(x)=sinx+2sinx cosx2⇒f(x)=sinx+sin2x2∴f′(x)=cosx+cos2xf′(x)=0⇒cosx+cos2x=0⇒cosx+2cos2x−1=0⇒2cos2x+cosx−1=00∠x∠π22cos2x+2cosx−cosx−1=0⇒2 cosx(cosx+1)−1(cosx+1)=0⇒(2(cosx−1)(cosx+1)=0
⇒cosx=12or−1
Now,since,0∠x∠π2
∴cosx=12
⇒x=π3
Now, f(x) is increasing when, f′(x)≥0
∴cos≥12∴xϵ[π2,π3]
and, f(x) is decreasing when, f'(x) < 0
∴xϵ(θ.π3)