Consider the given function ,
f(x)=sin3x and x∈[0,π2]
f(x)=sin3x ….(1)
Differentiate with respect to x
f′(x)=3cosx
For increasing and decreasing.
f′(x)=0
3cos3x=0
cos3x=0
When ,
x=π2&3π2
3x=π2&3x=3π2
x=π6&x=π2
Since , x=π6∈[0,π2]&π2x∈[0π2]
As show in fig. plotting the points
Since , x∈[o,π2] here we will start number line from 0 and end at π2
Point x=π6 divide the interval [0,π2] into two disjoint intervals
[0,π6) and (π6,π2]
Checking sign of f′(x) =3cosx
Case 1-
In x∈(0,π6)
0<x<π6
3×0<3x<3π6
0<3x<3π6
When ,
x∈(0,π6), then 3x∈(0,π2)
And we know
cos3θ>0 for 3x∈(0,π2)
cos3x>0, for 3x∈(0,π6)
3cos3x>0, for 3x∈(0,π6)
At x=0
f′(x)=3cos3×0=3
At x=π6
f′(x)=3cos3×(π6)×0=0
Since f′(x)≥0 for x∈[0,π6]
Thus f′(x) is increasing for x∈[0,π6]