1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard IX
Mathematics
Discriminant
Find 'k' it...
Question
Find
′
k
′
its
(
2
k
+
1
)
x
2
−
2
k
x
+
k
has real roots.
Open in App
Solution
If the quadratic equation
a
x
2
+
b
x
+
c
=
0
has real roots, then
b
2
−
4
a
c
⩾
0
Given equation
(
2
k
+
1
)
x
2
−
2
k
x
+
k
Here
a
→
2
k
+
1
b
→
−
2
k
c
→
k
Substituting these values in the above inequality, we get
⇒
(
−
2
k
)
2
−
4
(
2
k
+
1
)
k
⩾
0
⇒
4
k
2
−
8
k
2
−
4
k
⩾
0
⇒
−
4
k
2
−
4
k
⩾
0
⇒
−
4
(
k
2
+
k
)
⩾
0
⇒
(
k
2
+
k
)
⩽
0
⇒
k
(
k
+
1
)
⩽
0
Therefore,
⇒
−
1
⩽
k
⩽
0
Suggest Corrections
0
Similar questions
Q.
Find the value(s) of
k
if the equation
(
k
+
1
)
x
2
−
2
(
k
−
1
)
x
+
1
=
0
has real and equal roots.
Q.
Find the values of k for which the roots are real and equal in each of the following equations:
(i)
k
x
2
+
4
x
+
1
=
0
(ii)
k
x
2
-
2
5
x
+
4
=
0
(iii)
3
x
2
-
5
x
+
2
k
=
0
(iv)
4
x
2
+
k
x
+
9
=
0
(v)
2
k
x
2
-
40
x
+
25
=
0
(vi)
9
x
2
-
24
x
+
k
=
0
(vii)
4
x
2
-
3
k
x
+
1
=
0
(viii)
x
2
-
2
5
+
2
k
x
+
3
7
+
10
k
=
0
(ix)
3
k
+
1
x
2
+
2
k
+
1
x
+
k
=
0
(x)
k
x
2
+
k
x
+
1
=
-
4
x
2
-
x
(xi)
k
+
1
x
2
+
2
k
+
3
x
+
k
+
8
=
0
(xii)
x
2
-
2
k
x
+
7
k
-
12
=
0
(xiii)
k
+
1
x
2
-
2
3
k
+
1
x
+
8
k
+
1
=
0
(xiv)
2
k
+
1
x
2
+
2
k
+
3
x
+
k
+
5
=
0
(xvii)
4
x
2
-
2
k
+
1
x
+
k
+
4
=
0
(xviii)
4
x
2
-
2
k
+
1
x
+
k
+
1
=
0