Find k so that limx→2 f(x) may exist, where f(x)={2x+3,x≤2x+k,x>2
limx→2−f(x)=limx→2−(2x+3)
=2(2)+3
=7
∴limx→2−f(x)=7
Also,
limx→2−f(x)=limx→2+(x+k)
=(2+k)
Since, limx→2f(x) exists (given)
∴limx→2−f(x)=limx→2+f(x)
⇒7=2+k
⇒k=5
Evaluate limx→2f(x) (if it exists), where f(x)
=⎧⎪⎨⎪⎩x−[x],x<24,x=23x−5,x>2
Find
limx→1 f(x) where f(x)= {x2−1,x≤1−x2−1x>1
Evaluate limx→0f(x), where f(x)={|x|x,x≠00,x=0