wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find K where
limxk[x41x1]=limxk(x3k3x2k2)

Open in App
Solution

Ltx1x41x1=Ltx1(x2)212x1=Ltx1(x2+1)(x21)x1=Ltx1(x2+1)(x+1)
=(12+1)(1+1)=(2)(2)=4
Ltxkx3k3x2k2=Ltxk(xk)(x2+xk+k2)x2k2=Ltxk(xk)(x2+xk+k2)(x+k)(xk)
=Ltxkx2+xk+k2x+k=k2+(k)(k)+k2k+k=3k22k
Ltx1x41x1=Ltx1x3k3x2k2 so
4=3k22k
4(2k)=3k2
8k=3k2
3k28k=0
k(3k8)=0
k=83 & 0
If k=0 in 3k22k we get
3k22k=3(0)22(0)=0
If k=83 in 3k22k we get
3k22k=3(83)22(83)=3(649)163=643163=4
k=83.

1112326_1264852_ans_027883ea6f2841268529c6a48c5ec932.jpeg

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon