wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find (a+b)4+(ab)4 evaluate (3+2)4+(32)4 using binomial theorem

Open in App
Solution

(a+bn)=n0canb0+n1can1b1+n2can2b2+.....+..nn1ca1bn1+nnca0bn
(a+b4)=40ca4b0+41ca3b1+42ca2b2+43ca1b3+44ca0b4
40(40)a4×1+41×(41)a2b2+42(42)ab3+44(44)1×b4
41×4a4+41×3a3b+42(42)a2b2+43(43)ab3+440b4
(a+b4)=a4+4a3b+6a2b2+4ab3+b4
(a+(b)4)=a4+4a3(b)+6a2(b2)+4a(b3)+(b4)
(a+b4)=a44a3b+6a2b24ab3+b4
(a+b4)(ab4)=a44a3b+6a2b24ab3+b4a44a3b+6a2b24ab3+b4
(a+b4)(ab4)=a44a3b+6a2b24ab3+b4a4+4a3b6a2b2+4ab3b4
(a+b4)(ab4)=a4a4+6a2b26a2b2+b4b4+4ab3+4ab3+4a3b+4ab3
0+0+0+8a3b+8ab3
8a3b+8ab3
8ab(a2+b2)
(a+b4)(ab4)=8ab(a2+b2)
(3+2)4(32)4,a=3,b=2
(3+2)4(32)48=32((32)(22))
832
832(5)
8×53×2
40×6

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
What is Binomial Expansion?
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon