wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find limx0f(x) and limx1f(x), where f(x)={2x+3,x03(x+1),x>0

Open in App
Solution

Step 1: Finding limit at x=0
Given f(x)={2x+3,x03(x+1),x>0
L.H.L.=limx0f(x)=limx0(2x+3)=2(0)+3=3
R.H.L.=limx0+f(x)=limx03(x+1)=3(0+1)=3
L.H.L.=R.H.L.=3
limx0f(x)=3


Step 2: Finding limit at x=1
f(x)={2x+3,x03(x+1),x>0
For x>0, the function is 3(x+1)
Therefore,
limx1f(x)=limx13(x+1)
=3(1+1)
=3(2)
=6
limx1f(x)=6

Therefore, limx0f(x)=3 and limx1f(x)=6.

flag
Suggest Corrections
thumbs-up
81
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon