Find limx→0f(x) and limx→1f(x), where f(x)={2x+3,x≤03(x+1),x>0
Open in App
Solution
Step 1: Finding limit at x=0
Given f(x)={2x+3,x≤03(x+1),x>0 L.H.L.=limx→0−f(x)=limx→0−(2x+3)=2(0)+3=3 R.H.L.=limx→0+f(x)=limx→03(x+1)=3(0+1)=3 L.H.L.=R.H.L.=3 ∴limx→0f(x)=3
Step 2: Finding limit at x=1 f(x)={2x+3,x≤03(x+1),x>0
For x>0, the function is 3(x+1)
Therefore, limx→1f(x)=limx→13(x+1) =3(1+1) =3(2) =6 ∴limx→1f(x)=6