Given : f(x)=|x|−5 Limit of the given function at x=5 exists if limx→5−f(x)=limx→5+f(x)
R.H.L.=limx→5+f(x)=limh→0f(5+h) ⇒R.H.L.=limh→0|5+h|−5 ⇒R.H.L.=limh→0(5+h)−5 ⇒R.H.L.=limh→0h=0 L.H.L=R.H.L=0 Thus,limx→5f(x)=0
Find limx→5, where f(x) = |x| - 5,
Findf(x), where f(x) =