Find limx→3+x[x]. Is it equal to limx→3−x[x].
limx→3+
Let x=3+h⇒h=x−3
as x→3+⇒x>3 slightly
⇒x−3>0
⇒h>0⇒h→0+
=limh→0+3+h[3+h]
=limh→0+3+h3=3+03=1
Now limh→0+(2−h)=2
Now limx→3−x[x]
Let x=3−h⇒h=3−x
as x→3−⇒x<3 slightly
⇒3−x>0
⇒h>0⇒h→0+
=limh→0+3−h[3−h]=limh→0+3−h2
=3−02=32
∴limx→3+x[x]≠limx→3−x[x]