1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Inequalities Involving Modulus Function
Find lim x → ...
Question
Find
lim
x
→
1
f
x
, if
f
x
=
x
2
-
1
,
x
≤
1
-
x
2
-
1
,
x
>
1
Open in App
Solution
lim
x
→
1
f
x
=
?
f
x
=
x
2
-
1
,
x
≤
1
-
x
2
-
1
,
x
>
1
LHL
:
lim
x
→
1
-
f
x
=
lim
x
→
1
-
x
2
-
1
Let
x
=
1
-
h
,
where
h
→
0
.
lim
h
→
0
1
-
h
2
-
1
=
0
RHL
:
lim
x
→
1
+
f
x
lim
x
→
1
+
-
x
2
-
1
Let
x
=
1
+
h
,
where
h
→
0
.
lim
h
→
0
-
1
+
h
2
-
1
=
-
2
LHL
≠
RHL
Thus
,
lim
x
→
1
f
x
d
oes
not
exist
.
Suggest Corrections
0
Similar questions
Q.
Find
lim
x
→
1
f
(
x
)
, where
f
(
x
)
=
{
x
2
−
1
,
−
x
2
−
1
,
x
≤
1
x
>
1
Q.
Find
lim
x
→
1
f
(
x
)
,
where
f
(
x
)
=
{
x
2
−
1
,
x
≤
1
−
x
2
−
1
,
x
>
1
Q.
If
f
(
x
)
=
−
√
25
−
x
2
, then find
lim
x
→
1
(
f
(
x
)
−
f
(
1
)
x
−
1
)
Q.
If
f
(
x
)
=
−
√
25
−
x
2
then find
lim
x
→
1
f
(
x
)
−
f
(
1
)
(
x
−
1
)
Q.
Find
f
(
x
), where
f
(
x
) =