Find local maxima and local minima for the function f(x) =x3−3x
A
local max. at x=1, local min. at x=−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
local max. at x=−1, local min. at x=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
local max. at x=−1, no local min.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
local min. at x=1 ,no local max.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A local max. at x=−1, local min. at x=1 f′(x)=3x2−3 =0 Or x2−1=0 Or x=±1 . f′′(x)=6x Hence f′′(−1)<0 maxima. f′′(1)>0 ... minima. Hence f(x) attains the maximum value at x=−1 and a minimum value at x=1 f(−1)=3−1=2. The maximum value is 2