f(x)=3x4+4x3−12x2+12
Differentiating w.r.t. x,
f′(x)=12x3+12x2−24x
⇒f′(x)=12x(x2+x−2)
⇒f′(x)=12x(x−1)(x+2)
Putting f′(x)=0
⇒12x(x−1)(x+2)=0
⇒x(x−1)(x+2)=0
⇒x=−2,0,1
Critical points are x=−2,0,1
f′(x)=12x3+12x2−24x
Differentiation w.r.t. x
f′′(x)=36x2+24x−24
⇒f"(x)=12(3x2+2x−2)
Using second derivative test
At x=−2
f′′(−2)=12(3(−2)2+2(−2)−2)
=12(12−4−2)
=72>0
∴x=−2 is point of local minima.
At x=0
f′′(0)=12(3(0)2+2(0)−2)
= 12(0+0-2)\)
=−24<0
∴x=0 is point of local maxima
At x=1
f′′(1)=12[3(1)+2(1)−2]
=36>0
∴x=1 is pont of local minima.
f(x)=3x4+4x3−12x2+12
Local minima points are : x=−2,1
Local minimum values are:
f(−2)=3(−2)4+4(−2)3−12(−2)2+12
⇒f(−2)=48−32−48+12=20
And
f(1)=3+4−12+12=7
Local maxima point is x=0
Local maximum value is f(0)=12