wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find local maximum and local minimum values of the function f given by f(x)=3x4+4x312x2+12.

Open in App
Solution

f(x)=3x4+4x312x2+12
Differentiating w.r.t. x,
f(x)=12x3+12x224x
f(x)=12x(x2+x2)
f(x)=12x(x1)(x+2)
Putting f(x)=0
12x(x1)(x+2)=0
x(x1)(x+2)=0
x=2,0,1
Critical points are x=2,0,1
f(x)=12x3+12x224x

Differentiation w.r.t. x
f′′(x)=36x2+24x24
f"(x)=12(3x2+2x2)
Using second derivative test
At x=2
f′′(2)=12(3(2)2+2(2)2)
=12(1242)
=72>0
x=2 is point of local minima.
At x=0
f′′(0)=12(3(0)2+2(0)2)
= 12(0+0-2)\)
=24<0

x=0 is point of local maxima
At x=1
f′′(1)=12[3(1)+2(1)2]
=36>0
x=1 is pont of local minima.
f(x)=3x4+4x312x2+12
Local minima points are : x=2,1
Local minimum values are:

f(2)=3(2)4+4(2)312(2)2+12
f(2)=483248+12=20
And
f(1)=3+412+12=7
Local maxima point is x=0
Local maximum value is f(0)=12

flag
Suggest Corrections
thumbs-up
29
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon