Let P(a,b) be the point from which the chord of contact to the circle x2+y2=4 i.e., x2+y2=22 …………(1)
Touches the circle (x−2)2+y2=4 i.e., (x−2)2+y2=22 ………..(2)
Equation of the chord of contact to circle (1) wrt P, we have ax+by=4
⇒y=4−axb
Since the chord of contact touches the circle (2), we can write (2) as.
(x−2)2+(4−axb)2=4
⇒x2+4+4x+16+a2x2−8axb2=4
⇒b2x2+4b2−4b2x+16+a2x2−8ax=4b2
⇒(a2+b2)x2−(4b2+8a)x=16=0
Since the chord of contact touches the circle (2) at a single point.
∴ The above quadratic equation must have equal roots.
∴{−(4b2+8a)}2=4.16.(a2+b2)=0
⇒42b4+64a2+64ab2−64a2−64b2=0
⇒16b4+64ab2−64b2=0
⇒16(b4+4ab2−4b2)=0
⇒b4+4ab2−4b2=0
⇒b2(b2+4a−4)=0
⇒b2+4a−4=0 …………..(3)
Substituting a=x and b=y in equation (3), we get y2+4x−4=0, which is the required locus.