wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find loge(4.04)
Given: log104=0.6021and log10e=0.4343

Open in App
Solution

Let y=logex=f(x)
Let Δx=0.04x=4
Now, y=logx
dydx=1x

We know [Δy=dydxΔxandΔy=f(x+Δx)f(x)]

Δy=dydxΔx=1xΔx

Putting x=4 and Δx=0.4

Δy=14×0.04=0.01

Now
Δy=(x+Δx)f(x) putting all values

0.01=loge(4+0.04)log4e

log4.04e=0.01+log4e

=0.01+log4eloge10 [using log propertylogab=logaclogbc]

=0.01+0.602104343 [putting given values]

[log4.04e=1.3962]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Thermal Expansion
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon