wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find m if 1sinθ1+sinθ+1+sinθ1sinθ=mcosθ,π2<θ<π.

Open in App
Solution

1sinθ1+sinθ+1+sinθ1sinθ
(1sinθ)21sin2θ+(1+sinθ)21sin2θ
sin2A+cos2A=1
(a+b)(ab)=a2b2
1sinθcosθ+1+sinθcosθ
θϵ(π/2,π)
So, sinθ>0 & cosθ<0
1sinθcosθ+1+sinθcosθ
2cosθ=mcosθ
m=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon