Let 7m+3n=12 ...(1)
and 3m+7n=8 ...(2)
From equation (2), find the value of m in terms of n
m=8−7n3 ...(3)
Substituting m=8−7n3 in equation (1)
⇒ 7(8−7n3)+3n=12
⇒563−49n3+3n=12
⇒−49n3+3n=12−563
⇒−40n3=−203
⇒n=−20−40
⇒n=12
Substituting n=12 in equation (3), we get
m=8−7(12)3
⇒m=923
⇒m=96
⇒m=32
Therefore, the value of m+n is 32+12=42=2.