Find :-limx→0ex2−cosxx2
We have,
limx→0(ex2−cosxx2)
Apply L-Hospital rule,
⇒limx→0(ex2×2x+sinx2x)
⇒limx→0(ex2+sinx2x)
⇒e0+12(1)[∵limx→0(sinxx)]
⇒1+12
⇒32
Hence, this is the answer.
limx→0√2−√1+cosxx2