Putting x=0,
(1o+2o+3o3)10=(1+1+13)∞=1∞
This limit is of the form 1∞.
So, using limx→0[f(x)]g(x)=elimx→0⎛⎝1x+2x+3x3−1⎞⎠.⎛⎝1x⎞⎠
=elimx→0⎛⎝1x+2x+3x−33x⎞⎠=|00 form
=elimx→0⎛⎜⎝1xlog1+2xlog2+3xlog33x⎞⎟⎠
∵ using L-Hopital's Rule: limx→0f(x)g(x)=limx→0f′(x)g′(x)
if f(x)g(x)=00 form, at x=0
=e⎛⎜⎝log23+log33⎞⎟⎠
=⎛⎜⎝e13log2⎞⎟⎠⎛⎜⎝e13log3⎞⎟⎠
=⎛⎜
⎜⎝elog213⎞⎟
⎟⎠⎛⎜
⎜⎝elog313⎞⎟
⎟⎠
=213.313=613