wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find mean for the following data by using: (i) Direct Method: (ii) Short-cut Method; (iii) Step Deviation Method.
X 100−200 200−300 300−400 400−500 500−600
f 10 18 12 20 40

Open in App
Solution

Class Interval Mid values
(m)
(f) fm d=m−A fd d'=di=d100 fd'
100−200
200 −300
300 −400
400 −500
500 −600
150
250
350=A
450
550
10
18
12
20
40
1500
4500
4200
9000
22000
−200
−100
0
100
200
−2000
−1800
0
2000
8000
−2
−1
0
1
2
−20
−18
0
20
80
Σf=100 Σfm=41200 Σfd=6200 Σfd'=62

(i) Calculating mean using direct method:

X=ΣfmΣf here,m=l1+l22X=41200100X =412

(ii) Calculating mean using short cut method:

X=A+ΣfdΣf

Here,

A represents assumed mean.
d represents the deviation of the values from the assumed mean.

Here, we take 350 as the assumed mean. So, we take deviations of each item in the series from 350.


X=350+6200100or, X=350+62 X=412

(iii) Calculating mean height step-deviation method:

X=A+Σfd'Σf×i

X=A+Σfd'Σf×ior, X=350+62100×100X=412

Hence, the mean of the above series is 412.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Measure of Dispersion
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon