Given: Δ=∣∣∣1−243∣∣∣
Minor of a11=M11=3
Minor of a12=M12=4
Minor of a21=M21=−2
Minor of a22=M22=1
Cofactor of a11=A11=(−1)1+1M11
⇒A11=(−1)2⋅3=3
Cofactor of a12=A12=(−1)1+2M12
⇒A12=(−1)3⋅4=(−1)(4)=−4
Cofactor of a21=(−1)2+1M21
⇒A21=(−1)3(−2)=(−1)(−2)=2
Cofactor of a22=A22=(−1)2+2⋅M22
⇒A22=(−1)4⋅(1)=(1)(1)=1
Therefore,
M11=3,M12=4,M21=−2,M22=1 and
A11=3,A12=−4,A21=2,A22=1