We have,
n!3!(n−5)!:n!5!(n−7)!=10:3
⇒n!3!(n−5)!n!5!(n−7)!=103
⇒n!3!(n−5)!×5!(n−7)!n!=103
⇒5!(n−7)!3!(n−5)!=103
⇒5×4×3!(n−7)(n−6)(n−5)!3!(n−5)!=103
⇒20(n−7)(n−6)1=103
⇒3(n−7)(n−6)=1020
⇒6(n2−7n−6n+42)=1
⇒6n2−78n+252=1
⇒6n2−78n+251=0
Comparing that,
an2+bn+c=0
And we get,
a=6,b=−78,c=251
Then, using quadratic formula
n=−b±√b2−4ac2a
n=78±√(−78)2−4×6×2512×6
n=78±√6084−602412
n=78±√6012
n=78±2√1512
n=39±√156
Hence, this is the answer.