wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find n if: ∣ ∣ ∣1+a2b22ab2b2ab1a2+b22a2b2a1a2b2∣ ∣ ∣=(1+a2+b2)n

Open in App
Solution

find n ?
∣ ∣ ∣1+a2b22ab2b2ab1a2+b22a2b2a1a2b2∣ ∣ ∣=(1+a2+b2)n
Solve determinant
C2C2+aC3
∣ ∣ ∣1+a2b202b2ab1+a2+b22a2ba(1+a2+b2)1a2b2∣ ∣ ∣

(1+a2+b2)∣ ∣ ∣1+a2b202b2ab12a2ba1a2b2∣ ∣ ∣
R3R3+aR2
=(1+a2+b2)∣ ∣ ∣1+a2b202b2ab12a2b+2a2b01+a2b2∣ ∣ ∣
Expand the determinant with respect to C22
(1+a2+b2)[(1+a2b2)2+2b(2b+2ab)]
=(1+a2+b2)[(1+a2)+(b2)22(1+a2)b2+4b2(1+a2)]
(1+a2+b2)[(1+a2)2+(b2)2+2b2(1+a)]
(1+a2+b2)(1+a2+b2)2
(1+a2+b2)3
Compare both sides
n=3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon