We have,
(n+1)!=12×(n−1)!
(n+1)×(n+1−1)×(n+1−2)!=12×(n−1)!
(n+1)×n×(n−1)!=12×(n−1)!
(n+1)×n=12
n2+n−12=0
n2+4n−3n−12=0
n(n+4)−3(n+4)=0
(n+4)(n−3)=0
n=3,−4
Hence, this is the answer.
(i) If nP4:nP5=1:2 find n.
(ii) If n−1P3:n+1=5:12, find n.