Solving n−1P3 and nP4 separately.
n−1P3=(n−1)!(n−1−3)!=(n−1)!(n−4)!
=(n−1)(n−2)(n−3)(n−4)!(n−4)!
n−1P3=(n−1)(n−2)(n−3)⋯(i)
And nP4=n!(n−4)!
=n(n−1)(n−2)(n−3)(n−4)!(n−4)!
nP4=n(n−1)(n−2)(n−3)⋯(ii)
n−1P3: nP4=1:9
9(n−1P3)= nP4
Putting values from (i) and (ii)
9(n−1)(n−2)(n−3)=n(n−1)(n−2)(n−3)
⇒n=9.