Given A.P
1,2111,4111,...…….;x=17111
first term of this A.P is a1=1
second term of this A.P is a2=2111
nth term of this A.P is an=x=17111
common difference of A.P
d=a2−a1=(2111)−(1)=1011
the nth term of an A.P is given by
an=a1+(n−1)d
put an=17111; a1=1; d=1011 in above equation we get
⟹17111=1+(n−1)(1011)
⟹17111=1+1011n−1011
⟹17111=111+1011n
⟹1011n=17111−111
⟹n=170×1110×11
⟹n=17