nCr+nCr−1=?
nCr=n!r!(n−1)!
nCr−1=n!(r−1)!(n−r+11)!
nCr+nCr−1=n!r!(n−1)!+n!(r−1)!(n−r+1)!
=n!(r−1)!(n−r+1)![1r+1n−r+1]
=n!(r−1)!(n−r+1)![n−r+1+rr(n−r+1)]
==n!(r−1)!(n−r+1)!
=n+1Cr
putting values we get =3+1C3=4