wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find number of roots of the equation sinx=3cos2x1 in [π,π]

Open in App
Solution

sinx=2cos2x1

sinx=3(12sin2x)1

sinx=36sin2x1

6sin2x+sinx2=0

6sin2x+4sinx3sinx2=0

2sinx(3sinx+2)1(3sinx+2)=0

(3sinx+2)(2sinx1)=0

sinx=23,12

sinx=12

x=π6,ππ6

x=π6,5π6

sinx=23

x=sin1(23),π+sin1(23)

x=π6,ππ6,sin1(23),π+sin1(23)

Thus, there are 4 solutions.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon