The correct option is
A 0
0<cot−1x<π and
−π/2<tan−1x<π⇒ [cot−1x]∈{0,1,2,3} and [tan−1x]∈{−2,−1,0,1}
For [tan−1x]+[cot−1x]=2, following cases are possible
Case (i): [cot−1x]=[tan−1x]=1
⇒ 1≤cot−1x<2 and 1≤tan−1x<π/2
⇒ x∈(cot2,cot1] and x∈[tan1,∞)
∴ x∈ϕ as cot1<tan1
Case (ii): [cot−1x]=2, [tan−1x]=0
⇒ 2≤cot−1x<3 and 0≤tan−1x<1
⇒ x∈(cot3,cot2] and x∈[0,tan1)
∴ x∈ϕ as cot2<0
So no solution.
Case (iii): [cot−1x]=3, [tan−1x]=−1
⇒ 3≤cot−1x<π and −1≤tan−1x<0
⇒ x∈(−∞,cot3] and x∈[−tan1,0)
∴ x∈ϕ as cot3<−tan1
Therefore, no such values of x exist.